Studies of the g Factor for Cr⁴⁺ Ion in Bi₄Ge₃O₁₂ Crystal from Crystal-field and Charge-transfer Mechanisms

Xiao-Xuan Wu^{a,b,c}, Wen-Chen Zheng^{b,c}, and Sheng Tang^b

^a Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P. R. China
^b Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to Prof. W.-C. Zheng. Fax: +86-28-85416050; E-mail: zhengwc1@163.com.

Z. Naturforsch. **59a**, 467 – 470 (2004); received April 28, 2004

The complete third-order perturbation formulas of the g factors g_{\parallel} and g_{\perp} for $3d^2$ ions in tetragonal MX₄ clusters have been obtained by a cluster approach. In these formulas, in addition to contributions to the g factors from the crystal-field mechanism in the crystal-field theory, the contributions from the charge-transfer mechanism are included. From these formulas, the g factors g_{\parallel} and g_{\perp} for a Cr^{4+} ion in a Bi₄Ge₃O₁₂ crystal are calculated. The results agree with the observed values. The calculated $\Delta g_i(i=\parallel \text{ or } \perp)$ value due to the charge-transfer is opposite in sign and about 20% greater than that due to the crystal-field mechanism. So, for the $3d^n$ ions having a high valence in crystals, a reasonable explanation of the g factors should take both the crystal-field and charge-transfer mechanisms into account.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand- field Theory; Charge-Transfer Mechanism; Cr⁴⁺, Bi₄Ge₃O₁₂.